Bibliografía
1. Max M. World Health Organization cancer pain relief program: Network news. J Pain Symptom Manage. 1986;1(1):53-7. DOI: 10.1016/S0885-3924(86)80035-5.
2. Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6(11):625-35. DOI: 10.1038/nrrheum.2010.159.
3. Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. Elife. 2020;9: e57656. DOI: 10.7554/eLife.57656.
4. Renganathan M, Cummins TR, Waxman SG. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol. 2001;86(2):629-40. DOI: 10.1152/jn.2001.86.2.629.
5. He BH, Christin M, Mouchbahani-Constance S, Davidova A, Sharif-Naeini R. Mechanosensitive ion channels in articular nociceptors drive mechanical allodynia in osteoarthritis. Osteoarthritis Cartilage. 2017;25(12):2091-9. DOI: 10.1016/j.joca.2017.08.012.
6. Rosenberg JH, Rai V, Dilisio MF, Agrawal DK. Damage-associated molecular patterns in the pathogenesis of osteoarthritis: potentially novel therapeutic targets. Mol Cell Biochem. 2017;434(1-2):171-9. DOI: 10.1007/s11010-017-3047-4.
7. DAMPening Inflammation by Modulating TLR Signalling [Internet]. Hindawi; 2010 [updated /07/13; cited Nov 16, 2020]. Available from: https://www.hindawi.com/journals/mi/2010/672395/.
8. Watkins LR, Hutchinson MR, Johnston IN, Maier SF. Glia: novel counter-regulators of opioid analgesia. Trends Neurosci. 2005;28(12):661-9. DOI: 10.1016/j.tins.2005.10.001.
9. Hutchinson MR, Bland ST, Johnson KW, Rice KC, Maier SF, Watkins LR. Opioid-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal. 2007;7:98-111. DOI: 10.1100/tsw.2007.230.
10. Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol. 2012;234(2):316-29. DOI: 10.1016/j.expneurol.2011.09.038.
11. Flannery LE, Kerr DM, Finn DP, Roche M. FAAH inhibition attenuates TLR3-mediated hyperthermia, nociceptive- and anxiety-like behaviour in female rats. Behav Brain Res. 2018;353:11-20. DOI: 10.1016/j.bbr.2018.06.030.
12. Das N, Dewan V, Grace PM, Gunn RJ, Tamura R, Tzarum N, et al. HMGB1 Activates Proinflammatory Signaling via TLR5 Leading to Allodynia. Cell Rep. 2016;17(4):1128-40. DOI: 10.1016/j.celrep.2016.09.076.
13. Rudjito R, Agalave NM, Farinotti AB, Lundbäck P, Szabo-Pardi TA, Price TJ, et al. Sex- and cell-dependent contribution of peripheral high mobility group box 1 and TLR4 in arthritis-induced pain. Pain. 2020. DOI: 10.1097/j.pain.0000000000002034.
14. Gómez R, Villalvilla A, Largo R, Gualillo O, Herrero-Beaumont G. TLR4 signalling in osteoarthritis—finding targets for candidate DMOADs. Nat Rev Rheumatol. 2015;11(3):159-70. DOI: 10.1038/nrrheum.2014.209.
15. Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous Toll-like receptor 2/Toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheum. 2010;62(7):2004-12. DOI: 10.1002/art.27475.
16. Ferreira-Gomes J, Garcia MM, Nascimento D, Almeida L, Quesada E, Goicoechea C, et al. AB0043 TLR4 inhibition reduces movement-induced nociception and ATF-3 expression in experimental osteoarthritis. Annals Rheumatic Diseases. 2017;76(Suppl 2):1062.
17. Goicoechea C, Rincón A, Quesada E, Martín‐Fontelles MI, Pascual D. F164 Tlr4 Receptor Signalling Inhibitor Tlr4-a1 Blocks the Development of Hyperalgesia and Allodynia Induced by Paclitaxel in Rats. Eur J Pain Suppl. 2011;5(S1):121. DOI: 10.1016/S1754-3207(11)70413-8.
18. Garcia MM, Pascual D, Quesada E, Uranga JA, Goicoechea C. SAT0494 Early toll-like receptor 4 blockade impedes the behavioural and histological characteristics observed in a mia-induced animal model of osteoarthritic pain. Annals Rheumatic Diseases. 2017;76(Suppl 2):962. DOI: 10.1136/annrheumdis-2017-eular.6022.
19. Park H, Hong J, Yin Y, Joo Y, Kim Y, Shin J, et al. TAP2, a peptide antagonist of Toll-like receptor 4, attenuates pain and cartilage degradation in a monoiodoacetate-induced arthritis rat model. Sci Rep. 2020;10(1):17451. DOI: 10.1038/s41598-020-74544-5.
20. Mauro VD, Catalucci D. The importance of being ncRNAs: from bit players as “junk DNA” to rising stars on the stage of the pharmaceutical industry. Annals of Translational Medicine. 2017;5(6):147. DOI: 10.21037/atm.2017.01.20.
21. Ramanathan S, Shenoda BB, Ajit SK. Overview of microRNA Modulation in Analgesic Research. Curr Protoc Pharmacol. 2017;79(1):9.25.1,9.25.10. DOI: 10.1002/cpph.29.
22. Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, et al. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel). 2020;10(11):891. DOI: 10.3390/diagnostics10110891.
23. Sekar D. Implications of microRNA 21 and its involvement in the treatment of different type of arthritis. Mol Cell Biochem. 2020. DOI: 10.1007/s11010-020-03960-y.
24. Oliviero A, Della Porta G, Peretti GM, Maffulli N. MicroRNA in osteoarthritis: physiopathology, diagnosis and therapeutic challenge. Br Med Bull. 2019;130(1):137-47. DOI: 10.1093/bmb/ldz015.
25. Zhang M, Lygrisse K, Wang J. Role of MicroRNA in Osteoarthritis. J Arthritis. 2017;6(2):239. DOI: 10.4172/2167-7921.1000239.
26. Zhang G, Zhou Y, Su M, Yang X, Zeng B. Inhibition of microRNA-27b-3p relieves osteoarthritis pain via regulation of KDM4B-dependent DLX5. Biofactors. 2020;46(5):788-802. DOI: 10.1002/biof.1670.
27. Li X, Kroin JS, Kc R, Gibson G, Chen D, Corbett GT, et al. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints. J Bone Miner Res. 2013;28(12):2512-22. DOI: 10.1002/jbmr.2002.
28. Li X, Gibson G, Kim J, Kroin J, Xu S, van Wijnen AJ, et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 2011;480(1-2):34-41. DOI: 10.1016/j.gene.2011.03.003.
29. Wang H, Hu Y, Xie Y, Wang L, Wang J, Lei L, et al. Prediction of MicroRNA and Gene Target in Synovium-Associated Pain of Knee Osteoarthritis Based on Canonical Correlation Analysis. Biomed Res Int. 2019;2019:4506876. DOI: 10.1155/2019/4506876.
30. McDonald MK, Tian Y, Qureshi RA, Gormley M, Ertel A, Gao R, et al. Functional significance of macrophage-derived exosomes in inflammation and pain. Pain. 2014;155(8):1527-39. DOI: 10.1016/j.pain.2014.04.029.
31. Park C, Xu Z, Berta T, Han Q, Chen G, Liu X, et al. Extracellular MicroRNAs Activate Nociceptor Neurons to Elicit Pain via TLR7 and TRPA1. Neuron. 2014;82(1):47-54. DOI: 10.1016/j.neuron.2014.02.011.
32. Hoshikawa N, Sakai A, Takai S, Suzuki H. Targeting Extracellular miR-21-TLR7 Signaling Provides Long-Lasting Analgesia in Osteoarthritis. Molecular therapy. Nucleic acids. 2020;19:199-207. DOI: 10.1016/j.omtn.2019.11.011.
33. Kwok YH, Hutchinson MR, Gentgall MG, Rolan PE. Increased responsiveness of peripheral blood mononuclear cells to in vitro TLR 2, 4 and 7 ligand stimulation in chronic pain patients. PLoS One. 2012;7(8):e44232. DOI: 10.1371/journal.pone.0044232.
34. Levi-Montalcini R, Cohen S. In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci U S A. 1956;42(9):695-9. DOI: 10.1073/pnas.42.9.695.
35. McNamee KE, Burleigh A, Gompels LL, Feldmann M, Allen SJ, Williams RO, et al. Treatment of murine osteoarthritis with TrkAd5 reveals a pivotal role for nerve growth factor in non-inflammatory joint pain. Pain. 2010;149(2):386-92. DOI: 10.1016/j.pain.2010.03.002.
36. Ashraf S, Mapp PI, Burston J, Bennett AJ, Chapman V, Walsh DA. Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis. Ann Rheum Dis. 2014;73(9):1710-8. DOI: 10.1136/annrheumdis-2013-203416.
37. Nwosu LN, Mapp PI, Chapman V, Walsh DA. Blocking the tropomyosin receptor kinase A (TrkA) receptor inhibits pain behaviour in two rat models of osteoarthritis. Ann Rheum Dis. 2016;75(6):1246-54. DOI: 10.1136/annrheumdis-2014-207203.
38. Vincent TL. Peripheral pain mechanisms in osteoarthritis. Pain. 2020;161 Suppl 1:S138-46. DOI: 10.1097/j.pain.0000000000001923.
39. Ebersberger A, Natura G, Eitner A, Halbhuber K, Rost R, Schaible H. Effects of prostaglandin D2 on tetrodotoxin-resistant Na+ currents in DRG neurons of adult rat. PAIN. 2011;152(5):1114-26. DOI: 10.1016/j.pain.2011.01.033.
40. Sousa-Valente J, Calvo L, Vacca V, Simeoli R, Arévalo JC, Malcangio M. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthritis Cartilage. 2018;26(1):84-94. DOI: 10.1016/j.joca.2017.08.006.
41. Sagar DR, Nwosu L, Walsh DA, Chapman V. Dissecting the contribution of knee joint NGF to spinal nociceptive sensitization in a model of OA pain in the rat. Osteoarthritis Cartilage. 2015;23(6):906-13. DOI: 10.1016/j.joca.2015.01.010.
42. Park KA, Fehrenbacher JC, Thompson EL, Duarte DB, Hingtgen CM, Vasko MR. Signaling pathways that mediate nerve growth factor-induced increase in expression and release of calcitonin gene-related peptide from sensory neurons. Neuroscience. 2010;171(3):910-23. DOI: 10.1016/j.neuroscience.2010.09.027.
43. Mizumura K, Murase S. Role of nerve growth factor in pain. Handb Exp Pharmacol. 2015;227:57-77. DOI: 10.1007/978-3-662-46450-2_4.
44. Benítez-Angeles M, Morales-Lázaro SL, Juárez-González E, Rosenbaum T. TRPV1: Structure, Endogenous Agonists, and Mechanisms. Int J Mol Sci. 2020;21(10):3421. DOI: 10.3390/ijms21103421.
Artículos relacionados
Abstracts
Rev. Soc. Esp. Dolor. 2023; 30(13): 3-169
Pain: a "hotchpotch"
Rev. Soc. Esp. Dolor. 2020; 27(4): 278-280 / DOI: 10.20986/resed.2016.3507/2016